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Abstract

The study is focused on impact of manure application, rice varieties and water management

on greenhouse gas (GHG) emissions from paddy rice soil in pot experiment. The objectives

of this study were a) to assess the effect of different types of manure amendments and rice

varieties on greenhouse gas emissions and b) to determine the optimum manure application

rate to increase rice yield while mitigating GHG emissions under alternate wetting and drying

irrigation in paddy rice production. The first pot experiment was conducted at the Depart-

ment of Agronomy, Yezin Agricultural University, Myanmar, in the wet season from June to

October 2016. Two different organic manures (compost and cow dung) and control (no

manure), and two rice varieties; Manawthukha (135 days) and IR-50 (115 days), were

tested. The results showed that cumulative CH4 emission from Manawthukha (1.084 g CH4

kg-1 soil) was significantly higher than that from IR-50 (0.683 g CH4 kg-1 soil) (P<0.0046)

with yield increase (P<0.0164) because of the longer growth duration of the former. In con-

trast, higher cumulative nitrous oxide emissions were found for IR-50 (2.644 mg N2O kg-1

soil) than for Manawthukha (2.585 mg N2O kg-1 soil). However, IR-50 showed less global

warming potential (GWP) than Manawthukha (P<0.0050). Although not significant, the

numerically lowest CH4 and N2O emissions were observed in the cow dung manure treat-

ment (0.808 g CH4 kg-1 soil, 2.135 mg N2O kg-1 soil) compared to those of the control and

compost. To determine the effect of water management and organic manures on green-

house gas emissions, second pot experiments were conducted in Madaya township during

the dry and wet seasons from February to October 2017. Two water management practices

{continuous flooding (CF) and alternate wetting and drying (AWD)} and four cow dung

manure rates {(1) 0 (2) 2.5 t ha-1 (3) 5 t ha-1 (4) 7.5 t ha-1} were tested. The different cow

dung manure rates did not significantly affect grain yield or greenhouse gas emissions in

this experiment. Across the manure treatments, AWD irrigation significantly reduced CH4

emissions by 70% during the dry season and 66% during the wet season. Although a rela-

tive increase in N2O emissions under AWD was observed in both rice seasons, the global

warming potential was significantly reduced in AWD compared to CF in both seasons

(P<0.0002, P<0.0000) according to reduced emission in CH4. Therefore, AWD is the
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effective mitigation practice for reducing GWP without compromising rice yield while manure

amendment had no significant effect on GHG emission from paddy rice field. Besides, AWD

saved water about 10% in dry season and 19% in wet season.

Introduction

Developing new strategies is necessary to achieve the dual goals of ensuring food security and

protecting natural resources and the environment through reduced greenhouse gas (GHG)

emissions [1, 2]. It is estimated that nitrous oxide (N2O) and methane (CH4) emissions may

increase by 35–60% and 60%, respectively, by 2030 [3]. Flooded rice soils are an important

source of global CH4 emissions [4, 5], and rice-based cropping systems can emit substantial

amounts of N2O [6] during the rice season itself [7].

Rice is one of the most important cereal grains and staple food crops globally and is particu-

larly important in Asia [8]. Rice paddies contribute to the emission of the two most important

GHGs; methane and nitrous oxide. IPCC [9] reported that rice fields contribute about 30%

and 11% of global agricultural CH4 and N2O emissions, respectively. With a linearly increasing

rate of 0.26% per year during the recent few decades, the atmospheric N2O concentration has

increased by 18% compared to the preindustrial level. Methane and nitrous oxide have long

atmospheric lifetimes of 12 and 114 years, respectively, and account for 20% and 7%, respec-

tively, of global radiative forcing [10]. The high global warming potential (GWP) of CH4 and

N2O, 34 and 298 times that of CO2 at a 100-year time horizon, makes them major contributors

to climate change [11]. In recent years, suitable management practices have been developed

for achieving both improvement in rice yields and mitigation of GHG emissions, which

include the development of new rice varieties [12], the application of manure such as cow

dung [13], the selection of appropriate cultivation methods [14] and the timing of drainage

[15].

The magnitude of CH4 emissions from rice plants is regulated by complex and dynamic

interactions among the plants, environment, and microorganisms [16]. Methane produced in

flooded rice soils is emitted to the atmosphere by molecular diffusion, ebullition or plant-

mediated transport. Approximately 80–90% of the total CH4 flux is emitted to the atmosphere

from the rhizosphere via the rice plant [17]. An increase in plant biomass [18] and tiller num-

ber [19] enhanced CH4 oxidization activity by enlarging the volume of aerenchyma and

enhancing O2 transport from the atmosphere to the rhizosphere. Ma et al. [20] revealed that a

hybrid rice variety with 50–60% higher shoot biomass emitted less CH4 than an indica rice

variety, possibly due to higher CH4 oxidization activity.

Nitrous oxide is produced as a by-product of nitrification, denitrification, nitrifier denitrifi-

cation, etc. and moisture content is a key factor governing N2O production in soils [21]. Ciarlo

et al. [22] found that denitrification is dominant pathway for N2O emission when the water-

filled pore space in soils is high (80%), and if the soils were saturated than this level, most of

N2O would be reduced to nitrogen.

Selecting a rice variety that has high productivity and low GHG emissions is crucial for

improving crop yield and mitigating climate change; however, research examining the effects

of rice varieties has mostly focused on CH4 flux so far [12, 23, 24], with little focus on N2O flux

[25]. Many studies reported that the effect of rice varieties on methane emissions is mostly

related to rice growth performance, i.e., the number of plant tillers and above- and below-

ground biomass, root exudates and root arenchyma [26–30]. Although significant positive
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relationship have been found between rice biomass and methane fluxes [31, 32], a comparison

of rice varieties has produced different results [33, 34].

Organic residue amendments have been practised to improve soil fertility in paddy produc-

tion. The organic matter in paddy fields originates from both direct by-products of rice pro-

duction (such as sloughed-off root cells and root exudates) and added materials (manures and

previous crop residues). The addition of organic carbon to the soil, whether it comes from the

disposal of crop residues or as organic fertilizer, appears to be the most important factor in

methane production [32]. Waterlogged conditions are ideal for the decomposition of organic

matter in paddy fields. The methane production from rice soil can be increased by addition of

cow manure as a source of organic material [35]. Nitrous oxide emissions from applied fertil-

izer and manures can vary with different environmental factors (e.g., climate and soil condi-

tions), crop factors (e.g., crop type and crop residues), and management practices (e.g., type of

manure and fertilizer, application rate, time of application) [36].

Although there are wide range of factors influencing methane emission from paddy soil

[37–39], water management and organic amendment are the two main drivers of methane

production. Under anaerobic soil conditions, methanogens (methane-producing bacteria)

produce methane by oxidation of organic matter during anaerobic respiration. Flooded rice

soils are known to have strong denitrification activity emitting some amount of N2O from rice

soils. However, it is also guided by the water management conditions of the rice field. Nitrate

and nitrite in rice soils is limited due to submerged conditions. The oxygen supply due to

decomposition of organic matter, roots, and also through vascular transport via tillers may

help in production of nitrate in rice soils. Sometimes due to prolonged submergence of the

rice fields, the soil nitrate and nitrite N (available due to mineralization of organic matter) is

completely reduced to N2 gas thereby resulting in low N2O emission. This varies with the pre-

vailing conditions of the rice field. Although minimal N2O emissions are likely from flooded

soils, some off-site (indirect) N2O emissions are likely from irrigated rice production due to

the addition of nitrogen fertilizer to fields [40].

Myanmar ranks the sixth largest production for rice in the world. Rice is the country’s most

important crop and is grown on 7.3 million ha [41]. The conventional rice production method

commonly used by the farmers in Myanmar includes transplanting old seedlings (30–45)

under continuous flooding conditions and the intensive use of organic fertilizers such as

manure or compost. However, there is very limited information on methane emissions from

the flooded rice fields of Myanmar, although more than half of the cultivated area is under to

rice production [13, 42]. Thus, the objectives of this study were a) to assess the effect of differ-

ent types of manure amendments and rice varieties on greenhouse gas emissions and b) to

determine the optimum manure application rate to increase rice yield while mitigating GHG

emissions under alternate wetting and drying irrigation in paddy rice production.

Materials and methods

The first pot experiment was conducted at open field, Department of Agronomy, Yezin Agri-

cultural University (19˚ 45’N and 96˚ 6’E), Myanmar, during the wet season (June–October),

2016 to study the local production potential of GHG emission in this area. A two-factor facto-

rial experiment with completely randomized design was used with 3 replications. The factor A

was assigned into two categories of organic manure (compost and cow dung) and control (no

manure). The compost is collected from straw compost making process and stored for ten

months. The cow dung is resulted from farmer traditional heap method for ten months. The

amount of organic manure for cow dung and compost treatments was based on the nitrogen

content of the organic manure analysis. The recommended chemical fertilizer amounts are 60
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kg N ha-1, 30 kg P2O5 ha-1, and 20 kg K2O ha-1 for all treatments. The recommended amounts

of nitrogen fertilizer of compost and cow dung treatments were replaced by compost and cow

dung manures which was based on same amount of carbon content. Therefore, 3 t ha-1 of com-

post was applied to compost treatment, and 3.15 ton cow dung + chemical fertilizer (22.15 kg

N ha-1) was applied to cow dung treatment to get the recommended amount of nitrogen fertil-

izer based on their nitrogen analysis. The control treatment received only recommended

amount of chemical nitrogen fertilizer. The factor B was two types of rice varieties: Manawthu-

kha (135 days) and IR-50 (115 days). The two rice varieties were grown in a concrete pot (52.5

cm in diameter and 45 cm in height). The soil was collected from a lowland irrigated rice field.

Twenty-one-day-old seedlings were transplanted with two seedlings per pot. Compost and

cow dung manures were broadcasted at 14 days before transplanting to avoid transplanting

shock due to the manure decomposition process. The soil was analysed for pH (1:5 soil: water

suspension), electrical conductivity (1:5 soil: water suspension), total N% (Kjaldehl distillation

method), organic matter% (Tyurin’s method), calcium chloride extractable SO4-S (Turbidity

method) and Texture (pipette method). The manures were analysed for total N% (Kjaldehl dis-

tillation method), total P% (Molybivanado phosphoric acid method), total K% (Wet digestion

with HNO3: HCLO4 (4:1), total S% (Turbidity method) and organic carbon % (Tyurin’s

method). Table 1 shows the physiochemical properties of the soil and manures. The recom-

mended amount of T-super (30 kg P2O5 ha-1) was applied as basal fertilizer, and the recom-

mended amount of potash (20 kg K2O ha-1) was applied with two split applications (as basal

fertilizer and at the panicle initiation stage) to all treated pots. The water level was maintained

at 5 cm throughout the rice growing period except during the drying period before harvest.

During the rice growing season, weather data were recorded at the Department of Agronomy

and are shown in Fig 1. The average minimum and maximum temperatures during the rice

growing season (wet season) were 23.9 and 31.8˚C, respectively, with 739 mm of rainfall.

The second pot experiment was conducted in a farmer’s field, Madaya Township (22˚ 13’ 0"

N and 96˚ 7’ 0" E), Myanmar, during the dry and wet seasons (February–October 2017) to

assess the effect of cow dung manure and water management on greenhouse gases emissions

from paddy rice soils. The pots were arranged in a two-factor factorial experiment with

completely randomized design with three replications. Water management (continuous flooding

(CF) and alternate wetting and drying (AWD) was arranged as factor A. Different rates of

organic manure were assigned as factor B. In this study, cow dung manure was applied as an

organic source based on the reduced global warming potential (GWP) value in previous study

and widely used in the study area. The cow dung manure treatments (OM0 = no cow dung,

OM1 = half of the recommended cow dung (2.5 t ha-1), OM2 = the recommended rate of cow

dung (5 t ha-1) and OM3 = one and a half times the recommended rate of cow dung (7.5 t ha-1),

were applied seven days before transplanting. The recommended rate of cow dung manure is 5 t

ha-1. Each pot received the recommended fertilizer at the rates of 90 kg N ha-1, 30 kg P2O5 ha-1,

and 20 kg K2O ha-1. Urea, T-super and potash were used as nutrient sources. Urea was applied

as three equal split applications at the active tillering, panicle initiation and heading growth

Table 1. Physiochemical properties of experimental soil and organic manures used in the first pot experiment.

Item Total N% Total P% Total K% O.C%

Cow dung 1.2 1.0 2.1 23.3

Compost 2.0 2.9 1.9 24.5

Item pH EC (dS/m) Total N% OM% SO4-S (mg/kg) Texture %

Sand Silt Clay

Soil 6.7 0.4 0.2 2.7 12 79.74 13.28 6.98

https://doi.org/10.1371/journal.pone.0253755.t001
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stages. T-super was applied only as a basal fertilizer at one day before transplanting, and potash

fertilizer was applied in two equal split applications as a basal fertilizer and at panicle initiation.

The soil was collected from a lowland irrigated rice field and analysed for pH (1:5 soil: water sus-

pension), available N (Alkaline permanganate method), available P (9C-Olsen’s P-Malachite

green), available K (1N Ammonium acetate extraction), total N% (Kjaldehl distillation method),

organic matter% (Tyurin’s method), cation exchange capacity (CEC) (Leaching method) and

texture (Pipette method). The cow dung manure was collected from farmer traditional heap

method stored for ten months, and analysed for total N% (Kjaldehl distillation method) and

organic carbon % (Tyurin’s method). Table 2 shows the physiochemical properties of the soil

and cow dung.

IR-50 rice variety (115 days) was used based on reduced emission in previous study and

widely grown in the study area. Dry-season rice was transplanted on 1st February 2017 and

harvested on 14 May 2017. Wet-season rice was transplanted on 8 July 2017 and harvested on

11st October 2017. Just after transplanting, a base (40 cm in diameter with 2.5 cm water seal, 5

cm in height) was placed around the plants used for gas sampling to avoid disturbing the envi-

ronmental conditions around the rice plants during chamber deployment in both experi-

ments. The base was equipped with a water seal to ensure a gas-tight closure. The base

remained embedded in the soil throughout the rice growing period. Water tubes (PVC pipe-

Fig 1. Daily rainfall, maximum and minimum temperatures in Yezin Agricultural University, Myanmar during wet season, 2016.

https://doi.org/10.1371/journal.pone.0253755.g001

Table 2. Physiochemical properties of experimental soil and cow dung manure used in the second pot

experiment.

Analytical Item Unit Analytical Result

Soil pH 7.4 Moderately alkaline

Available N mg kg-1 50 Low

Available P mg kg-1 13 Medium

Available K mg kg-1 78 Low

Total N % 0.17

Organic matter % 1.8 Low

CEC cmolc kg-1 11 Low

Sand % 87

Silt % 4

Clay % 9

Textural class Loamy sand

Cow dung manure Dry season Wet season

Total N % 1.32 1.2

Organic carbon % 16 23.3

https://doi.org/10.1371/journal.pone.0253755.t002
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25 cm height with six row holes each 2.5 cm apart) were installed in the AWD pots at a depth

of 15 cm below the soil surface between the seedlings and the base just after transplanting. For

AWD pots, whenever there was no water in the water tube, irrigation water was applied to a 5

cm depth above the soil surface. The irrigation interval ranged from 4 to 9 days, and the

amount ranged from 7 to 13 litres depending on the different rates of cow dung manure in the

AWD pots. Withdrawal of water was started one week before the harvest period in all irrigated

pots. During the rice growing seasons, weather data were collected from the Department of

Agricultural Research, Madaya and are shown in Fig 2. The average minimum and maximum

temperatures were 21.8˚C and 35.6˚C during the dry season and 26.8˚C and 35.7˚C during the

wet season, respectively. The total rainfall amounts were 201.7 mm during the dry season and

420.6 mm during the wet season.

Gas sample collection, analysis and calculation

A two-bonded chamber with a total capacity of 77 L (93 cm height) was used for collecting the

gas sample. To thoroughly mix the gases in the chamber, the chamber was equipped with a

small 12 volt DC fan connected with three 9-volt dry battery [43]. For CH4 calculation, the

temperature was recorded with a digital thermometer (TT-508 Tanita, Tokyo, Japan). To com-

pensate for the air pressure changes between the increased temperature and gas sampling, an

air buffer bag (1-L Tedlar bag) was attached to the chamber. The silicon rubber tube connected

with three-way stop cock was inserted airtight into a hole on the chamber. The gas sample was

taken with an airtight 50 ml syringe by connecting it to the three-way stop cock and then trans-

ferred to a 20 ml pre-evacuated glass vial.

Gas sampling was performed at 7-day intervals starting from 1 day after transplanting until

harvest by the closed chamber method in pot experiment 1. In pot experiment 2, the first two

gas samplings were performed at one-week intervals after transplanting, and later gas sam-

plings were performed at 10-day intervals. The gas samples were collected from 9:00 am until

12:00 am and three times (0, 15, 30 min) for each treatment for gas flux calculation.

Methane and N2O concentrations were analysed with a gas chromatograph (GC 2014, Shi-

madzu Corporation, Kyoto, Japan) equipped with a flame ionization detector (FID) and an

electron capture detector (ECD). The amount of CH4 and N2O fluxes was calculated by using

the following equation:

Q ¼ ðV=AÞ x ðDc=DtÞ x ðM=22:4Þ x ð273=KÞ

where Q = the flux of gas (mg m-2 min-1)

V = the volume of the chamber (m3)

Fig 2. Daily rainfall, maximum and minimum temperatures in Madaya township, Myanmar during dry and wet seasons, 2017.

https://doi.org/10.1371/journal.pone.0253755.g002
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A = the base area of the chamber (m2)

(Δc/Δt) = the rate of increase or decrease in the gas concentration (mg m-3) per unit

time

(min)

M = the molar weight of the gas

K = Kelvin temperature of the air temperature inside the chamber

Total emissions were calculated by interpolation method of sample gas analysis at each gas

measurement for the growing period. In this study, the IPCC factors were used to calculate the

combined GWPs for 100 years (GWP = (25×CH4) + (298×N2O)) in kg CO2-equivalents ha-1

[9] for CH4 and N2O. The yield was recorded from each pot. The grains were threshed, cleaned

and sun-dried. Yields were adjusted at 14% moisture by using the following formula to remove

the error due to the different moisture content, and grain moistures were measured by using a

grain moisture metre (model: GMK-303RS).

Adjusted grain weight at 14% moisture level = A x W

where A = Adjustment coefficient

W = Weight of harvested grains

A ¼
100� moisture%

86

In both water management practices, the water was applied with 1.2 L water cup. The total

amount of water applied throughout the growing season was recorded and water saving in

AWD was calculated.

The greenhouse gas intensity (GHGI) was calculated by dividing the GWP by the rice grain

yield [44–46].

GHGI ¼ GWP=grain yield ðkg CO2� eq: kg
� 1 grainÞ

Statistical analysis

The data were analysed by using Statistix (version 8.0). Mean comparisons were performed by

least significant difference (LSD) test at the 5% level.

Results

First pot experiment during the wet season, 2016

Methane emission. During the early growth stage, low CH4 emission was observed for

both varieties until 36 days after transplanting (DAT), and then CH4 emission flux gradually

increased with some fluctuations until harvest (Fig 3). The mean cumulative CH4 emissions

from the control, compost, and cow dung treatments were 0.893, 0.951 and 0.808 g CH4 kg-1

soil, respectively. Although the effect was not significant, cow dung amendment reduced

cumulative CH4 emissions by 9.5% compared with the control and 15% compared to compost.

When comparing the two rice varieties, the total cumulative CH4 emissions were significantly

higher in the Manawthukha variety (1.084 g CH4 kg-1 soil) than in the IR-50 variety (0.683 g

CH4 kg-1 soil) (P<0.0046) (Table 3). The IR-50 variety reduced cumulative CH4 emissions by

37% compared to the Manawthukha variety. During the rice growing season, cumulative CH4

emissions were higher in later growth stages (reproductive and ripening) than in the vegetative

growth stage.

Nitrous oxide emission. High nitrous oxide emission was observed during very early

growth until 15 DAT in both varieties. After that, a small amount of N2O emission was found

until harvest (Fig 4). Although there was no significant difference in N2O emissions among the

PLOS ONE Rice varieties, organic manure and water management on greenhouse gas emissions

PLOS ONE | https://doi.org/10.1371/journal.pone.0253755 June 30, 2021 7 / 22

https://doi.org/10.1371/journal.pone.0253755


manure treatments, higher emission (3.218 mg N2O kg-1 soil) was recorded from the control

(no manure) compared to the compost (2.491 mg N2O kg-1 soil) and cow dung (2.135 mg N2O

kg-1 soil) (Table 1). Cow dung manure reduced cumulative N2O emissions by 33.7% compared

with the control and 14.3% compared to compost. There was also no significant difference in

cumulative N2O emissions among the tested varieties: Manawthukha variety (2.585 mg N2O

kg-1 soil), IR-50 (2.644 mg N2O kg-1 soil) (Table 3).

Global warming potential (GWP). GWP was not significantly different among manure

treatments, although higher GWP (17.2 Mt CO2-eq. ha-1) was observed in the compost treat-

ment followed by the control (16.3 Mt CO2-eq. ha-1) and cow dung treatment (14.6 Mt CO2-

eq. ha-1) (Fig 5A). There was a significant difference in GWP among the varieties (P<0.0050).

A higher GWP was observed for Manawthukha (19.5 Mt CO2-eq.ha-1) than for IR-50 (12.5 Mt

CO2-eq. ha-1).

Rice yield. Grain yield was not significantly affected by the manure treatments. However,

the numerically highest grain yield (122.3±2.4 g plant-1) was recorded from the control (no

manure), followed by the compost (102.6±13.6 g plant-1) and cow dung treatments (79.6±15.6

g plant-1). There was significant different in grain yield between the varieties Manawthukha

(121.5±15.0 g plant-1) and IR-50 (81.6±8.0 g plant-1) (P<0.0164) (Table 3).

Greenhouse gas intensity. Greenhouse gas intensity was not affected by manure manage-

ment and varieties (Table 3). However, across manure management treatments, higher GHGI

values were found in Manawthukha (3.8 kg CO2-eq. kg-1 grain) than in IR-50 (3.5 kg CO2-eq.

kg-1 grain) (Fig 5B). There was no interaction between manure and rice varieties on the GHGI.

Second pot experiment during the dry and wet seasons, 2017

Methane emission. The seasonal methane emissions of rice are shown in Figs 6 (dry sea-

son) and 7 (wet season). In the dry season, high methane emissions were observed in the early

growth stage and then decreased until harvest under both water regimes. In the wet season, a

slight increase in emissions was recorded in the early growth stage, emissions peaked in the

middle stage, and gradually decreased until harvest. There were significant differences in

cumulative CH4 emissions among water management practices (P<0.0003) (Table 4). Higher

cumulative CH4 emissions were observed under CF than AWD. Despite no significant differ-

ence among the cow dung manure rates, a generally higher amount of cow dung manure pro-

duced more methane emissions than lower rates (Fig 12A).

Fig 3. Methane emission of rice varieties at Yezin Agricultural University during the wet season, 2016. Mean value±standard deviation

(n = 3).

https://doi.org/10.1371/journal.pone.0253755.g003
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Nitrous oxide emission. The seasonal nitrous oxide emissions of rice are shown in Figs 8

(dry season) and 9 (wet season). Relatively high nitrous oxide emissions were found in the

early growth stage, and reduced emissions were found in the later growth stage in both sea-

sons. There were significant different in nitrous oxide emissions among the water manage-

ment practices in dry season (P<0.0159) but not significant in wet season (Table 4). AWD

gave a relative high N2O emission in both seasons. No significant difference was observed in

N2O emission among the manure rates in either season.

Global warming potential (GWP). The GWP was significantly different among water

management practices in both seasons (P<0.0004, P<0.0000). A higher GWPs (66.3 Mt CO2-

eq. ha-1 and 40.0 Mt CO2-eq. ha-1) were observed under CF than under AWD (20.1 Mt CO2-

eq. ha-1 and 13.7 Mt CO2-eq. ha-1) in the dry (Fig 10A) and wet seasons (Fig 10B), respectively.

Generally, the large application of cow dung manure resulted in a higher GWP in both seasons

(Fig 12B). The different rates of cow dung manure had no significant effect on the GWP in

either season.

Table 3. Effects of manure and rice variety on greenhouse gases emission and grain yield of rice during wet season, 2016.

Treatment CH4 (g kg-1 soil) N2O (mg kg-1 soil) Grain yield (g plant-1) GHGI (kg CO2-eqv kg-1 grain)

Manure

Control 0.893 3.218 122.3± 2.4 a 2.8

Compost 0.951 2.491 102.6±13.6 ab 3.8

Cow dung 0.808 2.135 79.6±15.6 b 4.3

LSD 0.05 0.307 3.490 38.2 1.7

Variety

Manawthukha 1.084 a 2.585 121.5±15.0 a 3.8

IR-50 0.683 b 2.644 81.6±8.0 b 3.5

LSD 0.05 0.251 2.849 31.2 1.4

Pr>F

Manure 0.6091 0.7922 0.0901 0.2332

Variety 0.0046 0.9649 0.0164 0.6719

Manure�Variety 0.6724 0.5766 0.6633 0.9931

CV (%) 27.67 106.09 29.92 38.66

Within each column, values with different alphabets indicate significant differences among the treatments at 5% of LSD test.

https://doi.org/10.1371/journal.pone.0253755.t003

Fig 4. Nitrous oxide emission of rice varieties at Yezin Agricultural University during the wet season, 2016. Mean value±standard

deviation (n = 3).

https://doi.org/10.1371/journal.pone.0253755.g004
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Rice yield. In this pot experiment, the grain yield was not significantly affected by water

management and manure amendment in either rice season (Table 5). However, higher grain

yields per plant were recorded with AWD than CF in both seasons. The manure rates had no

significant effect on rice yield.

Greenhouse gas intensity. Greenhouse gas intensities were significantly different among

the water management practices in both seasons (P<0.0002, P<0.0000) (Table 5). Significantly

higher GHGI values were found under CF than under AWD in both seasons (Fig 11). No sig-

nificant differences were found in GHGI values among the manure management practices.

However, the higher amount of cow dung manure affected the GHGI values under CF irriga-

tion, but the effect of manure was suppressed by AWD.

Water input and water saving. Water inputs of rice as affected by water and manure

management are shown in Table 6. There was significantly different of water input among the

water management practices in either rice season (P<0.0001, P<0.0000). CF was irrigated

more than AWD. The organic manure increases the water holding capacity of the soil. Accord-

ingly, the higher amount of cow dung manure used less water. Water saving of treatments is

shown in Table 7. AWD saved water 13.6% over CF in no cow dung manure in dry season and

Fig 5. Effect of organic manure and rice varieties on (a) global warming potential and (b) greenhouse gas intensity during wet season,

2016. Mean value±standard deviation (n = 3).

https://doi.org/10.1371/journal.pone.0253755.g005

Fig 6. Methane emission from rice under (a) continuous flooding and (b) alternate wetting and drying during the dry season, 2017.

Mean value±standard deviation (n = 3).

https://doi.org/10.1371/journal.pone.0253755.g006
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19.1% in wet season. Across the manure management, the water saving of rice mainly depends

on water management practices.

Discussion

Effect of manure and rice varieties on greenhouse gas emissions, global

warming potential and rice yield

Methane production and emissions from flooded paddies are highly affected by the addition

of organic matter [47]. The higher CH4 emission in this study was found in later growth stages

(Fig 3) because the CH4 emission was associated with higher soil organic matter with increased

microbial activities, decomposition of plant residues from fallen leaves and decayed roots, and

higher availability of root exudates in the rhizosphere [48]. Although there was no significant

Fig 7. Methane emission from rice under (a) continuous flooding and (b) alternate wetting and drying during the wet season, 2017.

Mean value±standard deviation (n = 3).

https://doi.org/10.1371/journal.pone.0253755.g007

Table 4. Mean effects of water and manure management on greenhouse gases emission of rice during dry and wet seasons, 2017.

Treatment Cumulative methane emission (g CH4 kg-1 soil) Cumulative nitrous oxide emission (mg N2O kg-1 soil)

Dry season Wet season Dry season Wet season

Water

CF 3.327 a 2.009 a 0.590 b 0.183

AWD 0.996 b 0.682 b 1.392 a 0.344

LSD 0.05 1.089 0.369 0.631 0.176

Manure

OM0 (0 t ha-1) 2.129 1.361 0.786 0.306

OM1 (2.5 t ha-1) 2.036 1.279 1.621 0.201

OM2 (5 t ha-1) 2.007 1.460 0.817 0.234

OM3 (7.5 t ha-1) 2.475 1.283 0.740 0.312

LSD 0.05 1.540 0.522 0.892 0.248

Pr>F

Water 0.0003 0.0000 0.0159 0.0709

Manure 0.9114 0.8682 0.1546 0.7335

Water x Manure 0.9038 0.8217 0.0890 0.8582

CV (%) 58.21 31.74 73.53 77.08

Within each column, values with different alphabets indicate significant differences among the treatments at 5% of LSD test.

https://doi.org/10.1371/journal.pone.0253755.t004
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difference based on manure management, cow dung manure reduced methane emissions.

This study also agrees with that of Oo et al. [30], who reported the lower CH4 emissions from

pots treated with well-decomposed cattle manure due to fewer carbon substrates with a reduc-

tion of potential CH4 precursors resulting from the preceding decompostion. In contrast to

CH4 emissions, high N2O emissions were recorded in the early growth stage, and small

amounts of emissions were recorded in the later growth stage (Fig 4). This could be due to the

rapid nitrification with the presence of oxygen and denitrification with the utilization of NO3
-

as electron acceptor in the initial stage with high temperature and low rainfall (Fig 1), and

indigenous soil nitrogen (Table 1). After emission peaked initially, the rates of N2O emission

were generally low due to continuous flooding. Another study reported that the consistently

low soil redox potential under continuous flooding resulted in more complete denitrification

and thus reduced N2O emissions [49]. The control (no manure) treatment resulted in higher

N2O emissions than the compost and cow dung treatments. Lower nitrous oxide emission was

resulted by incorporation of organic inputs due to nitrogen immobilization [50–52]. This

study agrees with that of Shan and Yan [53], who reported that N2O emissions were signifi-

cantly reduced by crop residue return combined with synthetic N fertilizers compared with

emissions from treatments only received synthetic N fertilizer.

Fig 8. Nitrous oxide emission from rice under (a) continuous flooding and (b) alternate wetting and drying during the dry season,

2017. Mean value±standard deviation (n = 3).

https://doi.org/10.1371/journal.pone.0253755.g008

Fig 9. Nitrous oxide emission of rice under (a) continuous flooding and (b) alternate wetting and drying during the wet season,

2017. Mean value±standard deviation (n = 3).

https://doi.org/10.1371/journal.pone.0253755.g009
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The selection of suitable rice varieties might play a significant role in regulating CH4 emis-

sions from rice fields [54]. The results of this study showed that there was a significant differ-

ence between the tested rice varieties (Fig 3 and Table 3). The result was in agreement with

other findings, which highlighted that there were substantial differences in the rates of CH4

emission among different rice varieties [30, 55, 56]. As ninety percent of methane emissions to

the atmosphere are through rice plants [57], the Manawthukha variety, which has a longer

growth duration, emitted more CH4 than IR-50, which has a shorter growth duration. Previ-

ous studies [42, 58–60] have also reported that the CH4 flux from late maturing rice is higher

than that from early maturing rice. According to this research finding, a shorter growth dura-

tion (IR-50) variety can be used to reduce methane emissions. When compared to the two rice

Fig 10. Effect of water and cow dung manure management on global warming potential of potted rice during dry (a) and wet (b) seasons,

2017. OM0-no cow dung, OM1- cow dung 2.5 t ha-1, OM2- cow dung 5.0 t ha-1, OM3- cow dung 7.5 t ha-1. Mean value±standard deviation

(n = 3).

https://doi.org/10.1371/journal.pone.0253755.g010

Table 5. Mean effects of water and manure management on rice yield during dry and wet seasons, 2017.

Treatment Yield (g plant-1) GHGI (kg CO2-eq. kg-1 grain)

Dry season Wet season Dry season Wet season

Water

CF 175.06±6.3 180.88±4.9 7.4 a 4.3 a

AWD 177.73±6.8 183.47±6.7 2.1 b 1.4 b

LSD 0.05 12.67 14.27 2.3 0.7

Manure

OM0 (0 t ha-1) 181.54±9.4 183.70±3.1 4.5 2.9

OM1 (2.5 t ha-1) 171.79±3.2 178.81±0.1 4.7 2.7

OM2 (5 t ha-1) 178.08±11.0 179.20±0.1 4.3 3.1

OM3 (7.5 t ha-1) 174.16±5.0 187.01±7.6 5.6 2.7

LSD 0.05 17.92 20.18 3.2 1.1

Pr>F

Water 0.6608 0.7060 0.0002 0.0000

Manure 0.6758 0.7984 0.8359 0.8283

Water x Manure 0.3976 0.6511 0.7742 0.8092

CV (%) 8.30 9.05 55.13 31.13

Within each column, values with different alphabets indicate significant differences among the treatments at 5% of LSD test.

https://doi.org/10.1371/journal.pone.0253755.t005
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varieties, IR-50 resulted in higher N2O emissions than the Manawthukha variety. This could

be due to the favourable effect of root exudates of IR-50 on the nitrification process in the soil.

Gogoi and Baruah [25] reported that the main driving forces influencing N2O emission in rice

were soil NO3-N, soil organic carbon. There was no interaction between manure and rice vari-

eties. The compost and Manawthukha variety emitted higher CH4 due to longer decomposing

time and support of substrates for methanogens. The control treatment and IR-50 variety

resulted in higher N2O emission due to nitrification and denitrification of inorganic nutrient

in the favour of root exudates (Fig 5A).

Cow dung manure resulted in a 10.4% reduction in GWP compared to the control (no

manure) with reduced CH4 and N2O emission. Combination of decomposed cow dung

manure + mineral fertilizer might suppress the available carbon and nitrogen for CH4 and

N2O production. Unfortunately, in our study, we couldn’t measure the carbon and nitrogen at

every gas sampling and their mechanisms. While an increased GWP (5.5%) was found in the

compost compared to the control. Huang et al. [61] reported that incorporation of organic res-

idues provides a source of readily available C and N in the soil and subsequently influences

N2O emissions. Manawthukha had a higher GWP (56%) than IR-50. These results were sup-

ported by Zheng et al. [62], who reported that yield-scaled GWP at 80–90 days of growth dura-

tion after transplanting was 87% higher than that at 70–80 days of growth duration after

Fig 11. Effect of water and cow dung manure management on greenhouse gas intensity of potted rice during dry (a) and wet (b) seasons, 2017.

OM0-no cow dung, OM1- cow dung 2.5 t ha-1, OM2- cow dung 5.0 t ha-1, OM3- cow dung 7.5 t ha-1. Mean value±standard deviation (n = 3).

https://doi.org/10.1371/journal.pone.0253755.g011

Fig 12. Relationship between methane emission and different cow dung manure rates (a) and between GWP and different cow dung manure

rates (b) in dry season, 2017.

https://doi.org/10.1371/journal.pone.0253755.g012
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transplanting. Feng et al. [63] also reported that yield-scaled GWP in late rice in a double-rice

cropping system was 73% higher than that for varieties with 90–100 days of growth duration

after transplanting.

A high grain yield of rice was recorded from the control due to the mineralization of indige-

nous soil organic matter and inorganic fertilizer (Table 3). Oo et al. [64] reported a high grain

yield under inorganic sources of nutrients due to the immediate release and availability of nutri-

ents. Relative to IR-50, Manawthukha had a higher grain yield by 48.9% whereas the GWP was

reduced in IR-50 than in Manawthukha. Therefore, considering the mitigation practice for GWP

from rice production, IR-50 and cow dung manure was experimented in 2017 rice seasons.

Effect of water management and manure application on greenhouse gas

emissions, global warming potential and rice yield

In the dry season, high methane emissions were observed in the early growth stage and then

decreased until harvest in both water regimes (Fig 6). The early increase in CH4 emission was

Table 6. Mean effects of water and manure management on water input of rice during dry and wet seasons, 2017.

Treatment Water input (I+R) (mm)

Dry season Wet season

Water

CF 1075.5 a 842.1 a

AWD 969.8 b 681.4 b

LSD 0.05 42.4 32.7

Manure

OM0 1030.5 775.0

OM1 1017.6 750.5

OM2 1015.4 740.6

OM3 1027.1 780.9

LSD 0.05 60.0 46.2

Pr>F

Water 0.0001 0.0000

Manure 0.9385 0.2372

Water x Manure 0.0955 0.7619

CV (%) 4.80 4.96

Within each column, values with different alphabets indicate significant differences among the treatments at 5% of

LSD test.

https://doi.org/10.1371/journal.pone.0253755.t006

Table 7. Comparison of water saving of rice as affected by water and cow dung manure management during dry

and wet seasons, 2017.

Treatment Water saving (%)

Water Cow dung manure Dry season Wet season

CF OM0

CF OM1

CF OM2

CF OM3

AWD OM0 13.6 19.1

AWD OM1 7.5 18.7

AWD OM2 2.8 17.1

AWD OM3 14.9 21.2

https://doi.org/10.1371/journal.pone.0253755.t007
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due to the indigenous soil carbon content and availability of substrates, and the decrease in the

later growth stage was due to the senescence of older leaves and non-availability of substrate as

the crop approached maturity [65–67]. In the wet season, a slight increase in emission was

recorded in the early growth stage, and emission was highest in the middle stage and gradually

decreased until harvest (Fig 7). A higher rate of CH4 production is attributed to the availability

of organic substrates from the previous crop residues in the form of plant-derived C through

processes such as root exudation and release of fallen leaves and intensively reduced conditions

in the rice rhizosphere [54, 68]. The gradual decrease in CH4 emission in later growth stage

was due to the decomposition and non-availability of substrates depending on temperature

(Fig 2). Higher cumulative CH4 emissions were observed under CF than under AWD in both

seasons because the anoxic conditions increased the methanogen population and favoured

methane production. The methane emission was higher in the dry season than in the wet sea-

son because it depended on the availability of indigenous soil carbon and decomposition pro-

cess favoured by high temperature in the dry season, and depletion of soil carbon and previous

crop resides decomposition hindered by low temperature in wet season (Fig 2). Relatively high

nitrous oxide emissions were observed in the early growth stage, and reduced emissions were

observed in the later growth stage in both seasons (Figs 8 and 9). This was due to the indige-

nous soil nitrogen content in the early stage, and depletion of nutrients and the available nitro-

gen content for nitrification and denitrification in the later stage. Higher N2O emissions were

observed under AWD than CF in both seasons [54, 69, 70]. AWD increased N2O emissions by

135% compared to CF in dry season and 88% in wet season. Similar to the CH4 emission pat-

tern, higher N2O emissions were observed in the dry season than in the wet season because of

the soil nitrogen availability and the favoured soil condition (high temperature and low rain-

fall) for nitrification and denitrification in the dry season [71, 72].

Generally higher rates of cow dung manure resulted in higher CH4 and N2O emission

because it provided carbon and nitrogen sources for methanogenesis and nitrification and

denitrification process. Methane is produced by methanogenic bacteria during the anaerobic

digestion of organic substrates [4] and N2O production is observed by soil water content and

availability of substrates (nitrate and easily degradable organic matter) for denitrification [73].

However, the polynomial distribution of methane emission with different cow dung manure

rates (Fig 12A) and polynomial distribution of GWP with different cow dung manure rates

(Fig 12B) were observed in dry season. The polynomial regression equation for methane emis-

sion is y = 2.1507–0.1279x+0.0224x2. The equation showed that the methane emission

decreased in the rate of 0.1279 g CH4 kg-1 soil at every increased unit (ton) of cow dung

manure applied, after that increased in the rate of 0.0224 g CH4 kg-1 soil at every increased

unit (ton) of cow dung manure applied. The coefficient of determination (R2) showed that

93% of variation in methane emission could be accounted by the quadratic regression equation

of different cow dung manure rates. The polynomial regression equation for GWP is

y = 42.964–2.4856x+0.4372x2. The equation showed that the GWP decreased in the rate of

2.4856 Mt CO2-equivalent ha-1 at every increased unit (ton) of cow dung manure applied, after

that increased in the rate of 0.4372 Mt CO2-equivalent ha-1 at every increased unit (ton) of cow

dung manure applied. The coefficient of determination (R2) showed that 92% of variation in

GWP could be accounted by the quadratic regression equation of different cow dung manure

rates. According to these results, it would be recommended that 5 t ha-1 should be applied for

improving soil fertility and reduced greenhouse gas emission. No interactive effect between

water management and the application of different cow dung manure rates was found on CH4

emissions in either season. However, the effect of the application of different cow dung

manure rates on N2O emissions was influenced by alternate wetting and drying irrigation
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practices in the dry season but not in the wet season. Therefore, the nitrification and denitrifi-

cation processes of soil are influenced by the soil moisture content [74–77].

A higher GWP was observed under CF in accordance with the higher methane emissions in

both seasons (Fig 10). Methane emission mainly contributes to the GWP from paddy produc-

tion. Many studies [39, 54, 78–82] reported that N2O emissions contribute much less to the

global warming potential than those of CH4. Therefore, the water regime in paddy production

is the main factor controlling CH4 emissions from rice fields [39, 54, 83].

AWD resulted in a higher grain yield per plant than did CF in both seasons (Table 3)

because it strengthened the air exchange between the soil and atmosphere and supplied suffi-

cient oxygen to the root system to accelerate soil organic matter mineralization which increase

soil fertility and favour rice growth [84, 85]. Yang and Zhang [86] reported an increase in

paddy yield under AWD due to the increase in the proportion of productive tillers. In this

study, AWD saved water about 10% over CF in dry season and 19% in wet season. Zhang et al.

[87] also indicated water saving of 35% under AWD with a 10% yield increase relative to that

under CF. Liu et al. [88], Ye et al. [89], and Djaman et al. [90] found that grain yield increased

with reduced water input by AWD. Grain yield was not affected by the different rates of cow

dung manure application because its decomposition was influenced by biotic and soil-envi-

ronmental factors. Relative to the CF water management, AWD produced comparable grain

yields, increased by 1.5% and decreased GHGI by 69% (Table 5). This suggests that by adopt-

ing alternate wetting and drying irrigation, it would be possible to achieve the dual goals of

maintaining productivity while minimizing the global warming potential of rice cultivation.

Conclusion

For sustainable agriculture, organic manures should be added at a recommended amount to

improve the rice yield and reduce greenhouse gas emissions. From our findings, the applica-

tion of cow dung manure can be recommended in paddy production since it mitigated the

global warming potential compared to that of the control and compost groups, although it

resulted in a lower yield potential. Additionally, the short duration rice variety had a lower

GWP and a lower GHGI value while maintaining the potential rice yield. Manure-induced

greenhouse gas emissions were suppressed by AWD irrigation practices, with significant

GHGI values. Thus, short duration varieties are highly recommended with AWD irrigation

and application of 5 t ha-1 cow dung manure to reduce greenhouse gas emissions and maintain

rice yield under the soil-environmental conditions of Myanmar. In our study, there was no

relationship between GWP and rice yield. Therefore, the choice of rice varieties should be

combined with soil-environmental factors and cultivation systems to mitigate greenhouse gas

emissions while increasing rice yields for sustainable rice production. Further studies under

field condition are needed to measure the effect of manure and mineral fertilizer on green-

house gas emission, global warming potential and rice yield under water management condi-

tions for better understanding of emission mechanisms.
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